Jaderný reaktor je zařízení, v němž se energie uvolněná při jaderném štěpení přeměňuje na energii tepelnou, která se pak v klasické elektrárenské části využívá k výrobě elektrické energie. Reaktory mají rozmanité konstrukce, princip činnosti i oblast využití. V další části se budeme zabývat jenom lehkovodním tlakovým reaktorem PWR (Pressurized light-Water cooled and moderated Reactor), který najdeme v obou našich jaderných elektrárnách. Tento reaktor se označuje také ruskou zkratkou VVER (Vodo-Vodjanyj Energetičeskij Reaktor). Palivem je obohacený uran ve formě oxidu uraničitého UO2, moderátorem i chladivem obyčejná voda. Přírodní uran je složen ze dvou izotopů s nukleonovými čísly 238 a 235. Pro štěpení je vhodný jenom izotop 235, kterého je v přírodním uranu pouze 0,7 % a proto se musí jaderné palivo tímto izotopem uměle obohacovat.
V jaderném reaktoru dochází k řízené štěpné reakci v palivu - jádra izotopu 92U235 zasažená pomalými neutrony se rozpadají na jádra lehčích prvků (odštěpky, fragmenty) a současně se při každém štěpení uvolní 2 - 3 rychlé neutrony. Fragmenty se vzájemně odpuzují a velkou rychlostí se od sebe rozlétají. Při jejich zabrzdění srážkami s ostatními atomy paliva se kinetická energie mění na teplo, materiál se silně zahřívá. Uvolněné neutrony mohou způsobit štěpení dalších uranových jader a jaderná reakce může dál probíhat jako
řízená řetězová reakce.
Lehkovodní reaktor
Pravděpodobnost štěpení jádra uranu je tím větší, čím pomalejší jsou ostřelující neutrony. Při štěpení však vzniknou rychlé neutrony s průměrnou kinetickou energií do 2 MeV. Mají-li vyvolat štěpení, musí se jejich energie snížit na hodnotu mezi 0,025 - 0,5 eV. Zpomalování neutronů se děje jejich srážkami s jádry moderátoru, který obklopuje palivo. Zpomalené neutrony buď štěpí jádra uranu, nebo jsou pohlcovány stíněním reaktoru nebo materiálem (absorbátorem) regulačních tyčí. Pomocí regulačních tyčí se reguluje množství volných neutronů v reaktoru a tím i průběh štěpení a výkon reaktoru. Okamžité zastavení reakce zajišťují bezpečnostní tyče, které obsahují mnohem vyšší koncentraci absorbátoru. Pozvolné regulace změn výkonu se dosahuje změnou koncentrace kyseliny borité v chladivu. Část reaktoru, ve které je uloženo palivo a ve které probíhá štěpná reakce, se nazývá aktivní zóna. Vzniklé teplo se z aktivní zóny odvádí chladivem a slouží v parogenerátoru k vyrobě páry pro pohon turbogenerátoru elektrárny.
Ukazováním myší na popis fází si prohlédněte princip řízení výkonu reaktoru
Výměna paliva probíhá při zastaveném reaktoru zpravidla jednou za 1 až 1,5 roku. Přitom se nahradí 1/4 až 1/3 palivových kazet a nahradí se kazetami s čerstvým palivem. Použité (nesprávně označované jako "vyhořelé") palivo se navenek nijak neliší od paliva čerstvého, změnila se jeho vnitřní struktura - místo části jader uranu 235 se v něm vyskytují jádra fragmentů a palivo se stalo radioaktivním. Výměna probíhá pod vodou, kazety s použitým palivem se několik let ochlazují v bazénu vedle reaktoru a teprve pak se přemístí do meziskladu použitého paliva.
Radioaktivní štěpné produkty při svém rozpadu produkují stále teplo, proto je potřeba použité palivové soubory chladit, než se nejaktivnější radionuklidy rozpadnou a teplota i radioaktivita klesne na úroveň, kdy je s nimi možno dále manipulovat.
Parametry jaderných reaktorů našich elektráren |
|
JE Dukovany |
JE Temelín |
typ reaktoru |
VVER 440 |
VVER 1000 |
tepelný výkon |
1375 MW |
3000 MW |
průměr tlak. nádoby |
3,56 m |
4,5 m |
výška tlak. nádoby |
11,8 m |
10,9 m |
palivové kazety |
312 ks |
163 ks |
hmotnost paliva |
42 t |
92 t |
moderátor a chladivo |
obyčejná (lehká) voda |
obyčejná (lehká) voda |
tlak v reaktoru |
12,25 MPa |
15,7 MPa |
teplota chladiva |
267 °C - 297 °C |
290 °C - 320 °C |
|
|
|